N93-22111

Flexible Thermal Protection Materials for Entry Systems

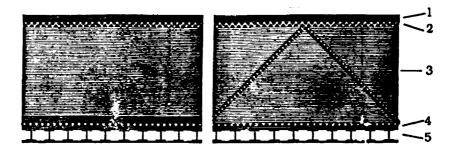
D. A. Kourtides Ames Research Center

Background

- Composite Flexible Blanket Insulation (CFBI)
 - •Silicon Carbide Interlock top fabric
 - Contains reflector shields-- aluminized Kapton
 - Alumina Insulation
 - IML has 2 inch centers to reduce foil/fabric damage
 - •Thermally stable (short term) at heat flux rates up to 31 Btu/ft²•s, surface temperatures ~2700°F
 - •Density similar to AFRSI-TABI
 - •Lower thermal conductivity at high temperatures than AFRSI or TABI
 - Requires ceramic coating for exposure to higher heating rates
 - •Vibroacoustic performance of ceramic coating unknown

Background

- Types of Flexible TPS currently available
 - Tailorable Advanced Blanket Insulation (TABI)
 - •Integrally woven with silicon carbide yarn
 - •Insulation is alumina or aluminoborosilicate
 - •Thermally stable (short term) at heat flux rates up to 31 Btu/ft²•s, surface temperatures ~2700°F
 - •Thermal Conductivity approximately similar to AFRSI
 - •Better vibroacoustic performance (Interlock version) than AFRSI
 - Density 9-10 lb/ft², approximately similar to AFRSI
 - Requires ceramic coating for exposure to higher heating rates


Technology Needs

- High temperature (>1800 °F) Flexible Coating for flexible insulations/fabrics
- •Flexibility required for TPS installation purposes
- Present coating applied "green" or unfired and rely on entry heat for curing.
- Suitable for fast reentry such as AFE, may not be suitable for slower reentries.
- •Prior firing may be required to survive
 - •High (>165 dB) vibroacoustic loads
 - High aerodynamic effects
 - •Particulate impact and
 - Moisture effects
- •Should not provide significant weight penalty (>15%)
- Have suitable emissivity values ≥ 0.85

Technology Needs

- Simple, Lightweight, Durable and Waterproof Insulations
 - •Intermediate (~ 2000 °F) temperature applications.
 - Utilize existing AFRSI, TABI or CFBI fabrication technology
 Use 2 inch centers on AFRSI or CFBI.
 - •Utilize metal coated ceramic (Nextel, etc.) OML fabric.
 - •Use existing graphite coating technology.
 - Bond metal foil (Ni, etc.) on OML fabric utilizing induction brazing techniques.
 - •Provides non-stitched impermeable surface
 - Resistant to moisture/water, high vibroacoustic loads, and aerodynamic effects

Metallic CFBI / TABI

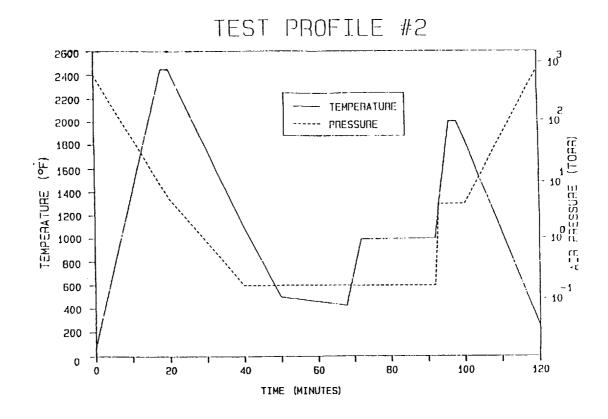
- 1 Metal Surface (Induction Brazed to Fabric)
- 2 Ceramic Fabric with Embedded Woven Wires or Metal coated Fabric
- 3 Ceramic Insulation with Reflective Metal foils (left) or Ceramic Fabric Supports (right)
- 4 Bond (RTV)
- 5 Vehicle Structure

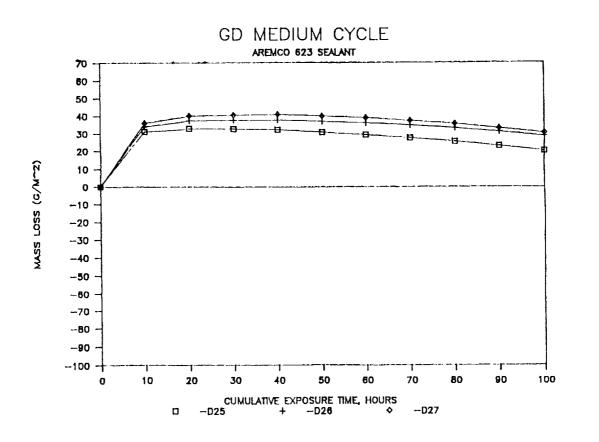
Technology Gaps for Flexible Insulations

- Ceramic Coatings
 - Require high temperature firing-- reduce mechanical properties of fibers/fabrics
 - Weight penalty
 - Reduce flexibility
 - •Questionable reusability
 - •Low adhesion (unfired)
- Metallic Surfaces
 - •Temperature limitation due to oxidation
- Close-out of complex shapes
- •Instrumentation, installation and attachment methods

Highest Payoff Areas for Flexible Insulations

- •Low cost fibers for high-temperature applications
- •Simplify fabrication procedures for insulations
- •Effective coatings-- use with low cost fibers


CURRENT HEAT SHIELD MATERIALS THERMAL LIMITS


MATERIAL	MAXIMUM USE TEMPERATURE, °F		EMITTANCE (Ø °F)	MAXIMUM HEAT FLUX CAPABILITY* BTU/FT ² -SEÇ	EQUIVALENT USE TEMPERATURE, °F°
	MULTIPLE FLIGHT	SINGLE FLIGHT	_		
FLEXIBLE ORGANIC					
FRSI	700	800	.9(800)	1.4	865
PBI	900+	1100	.9(1100)	2.7	1125
AFRSI, TABI, CFBI					
SILICA	1200	2000	.43(2000)	4.4	1480
NEXTEL	> 2000	> 2000	.48(2000)	> 7.5	1620
NICALON	2000	> 2400	.58(2000)	> 30	
RIGID CERAMIC INSULA	TION				
L1-900	2500	2700	.9(2500)	60	2960
LJ-2200	2600	2800	• •		
C 2200		(2900 FOR AF	E)	(80)	
FRCI-12	2600	2800	.9(2500)	70	3115
AETB-12/TUFI	2500	2700**		60	
AETB-12/RCG	2600+**	2800+**		70	
ASMI	2600+**	2900**		80	
AETB-8/ACG	2600**	2800+™		70	
METAL					
TITANIUM	1000			1.7	1000
RENE 41	1600			6.9	1600
INCONEL 617	2000			14	2000
RCC/ACC	3000		.0	55 (F.C.) 100 N.C.	3000 3560

Current Programs

- Aeroassist Flight Experiment
 - •Evaluate thermal performance of advanced Rigid and Flexible Insulations and Reflective Coating
 - •Lighter than baseline materials
 - •Rigid insulations perform well
 - •Flexible insulations require ceramic coating
 - •Reflective Coating effective at >15% radiative
- NASP
 - High and low temperature insulations
 - •Attachment/standoff methodology critical-- affects thermal performance

10.3.7 Recent Advanced Carbon-Carbon Efforts at LTV by Garland B.Whisenhut, LTV Missiles and Electronics Group

CONCLUSIONS

- O ACC SUBSTRATE FABRICATION TECHNOLOGY IN GOOD SHAPE.
- O ACC COATING IMPROVEMENTS SATISFACTORY BUT ADDITIONAL WORK NEEDED.
- O NON-DESTRUCTIVE TEST TECHNIQUES TO MONITOR HARDWARE DURING OPERATIONAL LIFE NEEDED.
- O COST REDUCTION APPROACHES A HIGH PRIORITY.

-			
	•		
	•		
;			
:			
w			
20 · · · · · · · · · · · · · · · · · · ·			
•			
<u>:</u>			
•			